ALGAE-REDUCING ECOSYSTEM SERVICES OF A NATIVE BIVALVE IN AN URBAN ESTUARY

4 22

ALLY KIDO APRIL 4, 2024

IME

Background

Study System

Research Aims

Experiments and Results

Conclusions and Future Directions

WHY ARE EXCESS NUTRIENTS BAD?

- Reduces oxygen
- Creates hypoxic and anoxic zones
- Not good for other animals in the water

ALGAE BLOOMS ARE FREQUENT IN BALTIMORE HARBOR

WAYS TO REDUCE ALGAE IN THE WATER

HOW CAN BIVALVES CLEAR THE WATER?

- Bivalves are filter feeders
- Sort through particles and use nutrients for growth
- Unused particles are returned as:
 - Feces/Pseudofeces
 - Dissolved nutrients
- This is an ecosystem service provided by the bivalve

OYSTER NUTRIENT CREDIT TRADING

Oyster Growers

Nutrient Market

Groups that need to reduce nutrient input

DO OYSTERS GROW IN BALTIMORE HARBOR?

- Oyster gardening does occur, but oysters are moved to restoration sites
- No natural oyster populations
- Bacteria contamination
- Low salinity water

DARK FALSE MUSSEL (*MYTILOPSIS LEUCOPHAEATA*)

DARK FALSE MUSSEL (MYTILOPSIS LEUCOPHAEATA)

RESEARCH AIMS

1. Determine if *M*. *leucophaeata* can reduce cultured algae 2. Examine the effect of water temperature on clearance rate 3. Examine the effect of water salinity on clearance rate

4. Determine if *M*. *leucophaeata* can reduce natural algae blooms

- In vitro chlorophyll (IVCH)
- Algae counts
- Carbon and nitrogen analysis
- Extracted total chlorophyll

• In vitro chlorophyll (IVCH)

- Algae counts
- Carbon and nitrogen analysis
- Extracted total chlorophyll

- In vitro chlorophyll (IVCH)
- Algae counts
- Carbon and nitrogen analysis
- Extracted total chlorophyll

- In vitro chlorophyll (IVCH)
- Algae counts
- Carbon and nitrogen analysis
- Extracted total chlorophyll (fluorometer)

RESEARCH AIMS

1. Determine if *M*. *leucophaeata* can reduce cultured algae

2. Examine the effect of water temperature on clearance rate 3. Examine the effect of water salinity on clearance rate 4. Determine if *M*. *leucophaeata* can reduce natural algae blooms

AIM 1 METHODS - ALGAE SPECIES

- 1000 ml of water
- ~20 mussels per container
- 2 algae species:
 - Isochrysis
 - Chaetoceros
- Water collections:
 0, 2, 4, 6, and 22.5
 hours

Isochrysis

Chaetoceros

TYPES OF SAMPLES COLLECTED

Mussel Treatment No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Chlorophyll extractions

4		~	
· ·		Sne	ries
 •	1.1946		

MUSSELS CAN REDUCE CULTURED ALGAE IVCH LEVELS

Effect of Treatment: *Isochrysis* - p < 0.001 *Chaetoceros* - p < 0.001

AIM 1: Algae Species		AIM 2	

MUSSELS CAN REDUCE CULTURED ALGAE IVCH LEVELS

Effect of Time	lso.	Chaet.
IVIUSSEIS	p < 0.001	p < 0.001

Error bars are SEM

AIM 1: Algae Species			AIM 2		AIM 3	AIM 4
		Isc	ochrysis		Chaetoceros	
MUSSELS CAN REDUCE EXTRACTED	Chla/L) 001			Ţ		

Effect of Time	lso.	Chaet.
Mussels	0.039	0.001
No Mussels	0.717	0.135

CHLOROPHYLL

CONCLUSIONS AIM 1

- Mussels can reduce cultured algae
- Time has a significant effect on chlorophyll (IVCH and extracted) levels

RESEARCH AIMS

1. Determine if *M*. *leucophaeata* can reduce cultured algae 2. Examine the effect of water temperature on clearance rate 3. Examine the effect of water salinity on clearance rate 4. Determine if *M*. *leucophaeata* can reduce natural algae blooms

AIM 2 METHODS - TEMPERATURE

- 500 or 800 ml of water
- ~10 mussels per container
- Temperatures: 10, 20, and 30°C
- Water collections: 0, 2, 4, and 6 hours

Noah Mansfield

Isochrysis algae culture

Example set up using water baths to alter temperature

AIM 3

AIM 4

WATER TEMPERATURES IN BALTIMORE HARBOR

TYPES OF SAMPLES COLLECTED

Mussel Treatment

No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Algae counts

TYPES OF SAMPLES COLLECTED

Mussel Treatment

No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Algae counts

CLEARANCE RATE EQUATION

$$R_{C} = \frac{V}{nt} \left\{ \ln \left(\frac{C_{0}}{C_{t}} \right) - \ln \left(\frac{C_{0'}}{C_{t'}} \right) \right\}$$

- R_{C} = Clearance Rate
- V = Volume (liters)
- n = Number of mussels
- t = Time (hours)

- C_0 = Concentration of treatment at start $\langle \langle \rangle$
- C_t = Concentration of treatment at end
- $C_{0'}$ = Concentration of control at start
- $C_{t'}$ = Concentration of control at end

AIM

AIM 4

	Effect of Treatment
Trial 1	p < 0.001
Trial 2	p < 0.001

Trial 1

AIM

AIM 4

Effect of Time	Trial 1	Trial 2
Mussels	p < 0.001	p < 0.001
No Mussels	0.348	0.06

Trial 1

34

AIM 3

AIM 4

MUSSELS HAVE LOWER IVCH-BASED CLEARANCE RATES AT LOWER TEMPERATURES

<u>One way ANOVA</u>: p = 0.014

Pairwise Comparisons:

10°C – 20°C: 0.079 **10°C – 30°C: 0.014** 20°C – 30°C: 0.728

CONCLUSIONS AIM 2

- Mussels have a lower clearance rate at lower temperatures
- At all temperatures, the mussels were able to reduce the IVCH levels

RESEARCH AIMS

1. Determine if *M*. *leucophaeata* can reduce cultured algae

2. Examine the effect of water temperature on clearance rate 3. Examine the effect of water salinity on clearance rate 4. Determine if *M*. *leucophaeata* can reduce natural algae blooms

AIM 3 METHODS - SALINITY

- 500 or 800 ml of water
- ~10 mussels per container
- Salinities: 5, 10, and 15 ppt
- Water collections:0, 2, 4, and 6 hours

Noah Mansfield

0 Hours

6 Hours

Month

TYPES OF SAMPLES COLLECTED

Mussel Treatment

No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Algae counts

TYPES OF SAMPLES COLLECTED

Mussel Treatment

No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Algae counts

CLEARANCE RATE EQUATION

$$R_{C} = \frac{V}{nt} \left\{ \ln \left(\frac{C_{0}}{C_{t}} \right) - \ln \left(\frac{C_{0'}}{C_{t'}} \right) \right\}$$

- R_{C} = Clearance Rate
- V = Volume (liters)
- n = Number of mussels
- t = Time (hours)

- C_0 = Concentration of treatment at start $\langle \langle \rangle$
- C_t = Concentration of treatment at end
- $C_{0'}$ = Concentration of control at start
- $C_{t'}$ = Concentration of control at end

AT ALL SALINITIES TESTED, MUSSELS REDUCE IVCH LEVELS

	Effect of Treatment	
Trial 1	p < 0.001	
Trial 2	p < 0.001	

AT ALL SALINITIES TESTED, MUSSELS REDUCE IVCH LEVELS

Effect of Time	Trial 1	Trial 2
Mussels	p < 0.001	p < 0.001
No Mussels	p < 0.001	0.43

SALINITY DOES NOT AFFECT CLEARANCE **RATES IN MUSSELS**

One-Way ANOVA:
Trial 1 – p = 0.162
Trial $2 - p = 0.116$

Pairwise comparisons	Trial 1	Trial 2
5-10	0.141	0.983
5-15	0.455	0.140
10-15	0.621	0.182

Error bars are SEM

CONCLUSIONS AIM 3

- Salinity does not affect clearance rates of mussels
- Mussels are still able to reduce the IVCH levels
- Still more environmental variables to consider:
 - DO
 - pH
- Stage of mussels

RESEARCH AIMS

1. Determine if *M*. *leucophaeata* can reduce cultured algae

2. Examine the effect of water temperature on clearance rate 3. Examine the effect of water salinity on clearance rate 4. Determine if *M*. *leucophaeata* can reduce natural algae blooms

AIM 4 METHODS – NATURAL ALGAE BLOOMS

- 1,500 ml of algae bloom water
- ~20 mussels per container
- Water collections: 0, 2, 4, 6, and 24 hours
- June September

ALGAE BLOOM COLLECTION DATES

TYPES OF SAMPLES COLLECTED

Mussel Treatment

No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Algae counts
- Carbon and nitrogen analysis
- Extracted total chlorophyll

TYPES OF SAMPLES COLLECTED

Mussel Treatment

No-Mussel Treatment

- In vitro chlorophyll (IVCH)
- Algae counts
- Carbon and nitrogen
 analysis
- Extracted total chlorophyll

AIM 1	AIM 2	AIM 3	AIM 4: Natural Algae Blooms
		COLLECTIO	N TIMELINE

AIM 1

AIM 3

MUSSELS REDUCE IN VITRO CHLOROPHYLL (IVCH)

Effect of Treatment: WB1 - 0.877 WB2 - 0.001 WB3 - 0.013 WB4 - 0.006 WB5 - p < 0.001

AIM 1

AIM 3

MUSSELS REDUCE IN VITRO CHLOROPHYLL (IVCH)

Effect of Time	Mussel	No Mussel
WB1	p < 0.001	0.297
WB2	0.011	p < 0.001
WB3	p < 0.001	0.148
WB4	p < 0.001	0.25
WB5	p < 0.001	0.071

OYSTER NUTRIENT CREDIT TRADING

FLOWCAM IMAGES SHOW VARIATION IN ALGAE SPECIES

- Three experiments:
 - WB3 July 12, 2023
 - WB4 July 31, 2023
 - WB5 September 20, 2023

AIM 1 AIM 2			AIM 3	AIM 4: Natural Algae Blooms					
	MUSSELS REDUCE CELL COUNTS		(count/ml)	WB3: July 12, 2023		WB4: July 31, 2023	WB5: September 20, 2023	Treatment	
				rane Cell Co					Mussels No Mussels
	Effect of Time	Mussel	No Mussel	Ave	1000-				
	WB3	0.036	0.111			\pm			
	WB4	0.039	0.039					■	

0.039

WB5

0.368

0

0

500

1000

1500 0

Error bars are SEM

1500

1000

1500 0

500 1000 Time (minutes)

500

NITROGEN

- Nitrogen analysis from particulate matter
- Samples sent to Nutrient Analytical Services Laboratory

MUSSELS REDUCE NITROGEN CONCENTRATIONS

Effect of Treatment: WB1 - p = 0.686WB2 - p = 0.005WB3 - p = 0.129WB4 - p = 0.012WB5 - p = 0.254

MUSSELS REDUCE NITROGEN CONCENTRATIONS

Effect of Time	Mussel	No Mussel
WB1	0.472	0.091
WB2	p < 0.001	0.033
WB3	0.006	0.683
WB4	0.014	0.105
WB5	p < 0.001	0.808

CONCLUSIONS AIM 4

- Mussels reduce IVCH levels of wild algae blooms
- Mussels can reduce nitrogen
- Numerous variables to consider:
 - Mussel stage
 - Algae bloom composition
 - Other filter feeders

SUMMARY OF RESULTS

1. Determine if *M*. *leucophaeata* can reduce cultured algae

Chlorophyll

2. Examine the effect of water temperature on clearance rate

Clearance

Rate

3. Examine the effect of water salinity on clearance rate 4. Determine if *M*. *leucophaeata* can reduce natural algae blooms

- Baltimore has a requirement to reduce nutrient inputs into the harbor the its Municipal Separate Sewer System (MS4) permit
 - Street sweeping, infrastructure improvements

Internation

 Could the Dark False Mussel provide nutrient removal credits for Baltimore City?

OYSTER NUTRIENT CREDIT TRADING

\$190/ lb of Nitrogen

MUSSEL NUTRIENT CREDITS?

BIOFOULING NUTRIENT CREDITS?

Biofouling community

FUTURE DIRECTIONS

- More filter feeders to examine
- Other environmental factors to investigate:
 - Algae bloom composition
 - Stage and age of mussels
- Other ecosystem services to consider
- Create a model for total nutrients removed by this ecosystem service

CONCLUSIONS

- Mussels can reduce both lab grown and wild algae blooms
- Provides a promising alternative to oysters and a way to remove nutrients from Baltimore Harbor
- Future work should focus on the biofouling community and understanding other ecosystem services that the growing structures may provide

ACKNOWLEDGEMENTS

- ICARE Research Team
 - Dr. Eric Schott
 - Sarah Lane
 - Charmaine Dahlenburg
- Schott Lab
 - Noah Mansfield
 - Hannah Turner
 - Dr. Khaled Geba
 - Jessica Diaz
 - Jen Herrera
 - Olivia Pares
 - Ronita Sequeira
- Image symbols from: Integration and Application Network (ian.umces.edu/media-library)
- Email: akido1@umbc.edu

- Thesis Committee:
 - Dr. Eric Schott
 - Dr. Jamie Pierson
 - Sarah Lane
- Nutrient Analytical Services Laboratory at CBL
- Horn Point Oyster Hatchery
- UMBC Administrators
 - Teressa Freeman
 - Mildred Homa
 - Alek Fredriksson

IMET Angel

Investors

ΙΜΕΤ

Grant #: NSF DGE 1922579

ICARE Ecology • Engineering • Social Science • Policy

Questions?